5.00
(1 Rating)

AI & Machine Learning With Python

By ITBI, CUET Categories: AI, Phase 01
Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

Course by:

IT Business Incubator, CUET 

Chattogram-4349, Bangladesh.

Download the Course Outline

 

Course Summary 

No. Subject Comments
1 Course Duration 72 Hours (24 Classes, 12 Weeks)
2 Pre-requisites  Yes (Probability and Statistics, Linear Algebra (basics), Programming Knowledge (in Python).
3 Lab Facilities SKITBI, CUET will provide.
4 Special Device Depends on Capstone Project.

 

 

Schedule

Batch – 01 (Offline): Friday & Saturday 10 am to 1 pm

Batch – 02 (Online): Friday & Saturday 3 pm to 6 pm

 

Coordinator 

Professor Dr. M. Moshiul Hoque

Professor, Dept of CSE, CUET

Director, IT Business Incubator in CUET

Former Dean, Faculty of Electrical & Computer Engineering, CUET

Chair, IEEE Bangladesh Section

 

Trainers

MD. Asif Iqbal 

Assessment developer, Workera.ai 

Head of R&D, Diligite Ltd 

Trainer, BDSET Project (AI & ML), BHTPA.

Dipon Talukder

Data & AI Specialist, Workera.ai 

Saadman Sakib

Faculty member, Dept of CSE, CUET

Md. Mosharraf Hossain

CEO, Diligite Ltd. 

Trainer, 8IT Project, BHTPA.

Learning Outcomes

By the end of this course, participants will:

  • Gain proficiency in essential AI concepts, including machine learning, NLP, and computer vision, to enhance employability.
  • Develop foundational skills in probability, statistics, basic linear algebra, and programming necessary for AI applications.
  • Engage in in-depth sessions covering AI fundamentals, machine learning algorithms, NLP techniques, and computer vision principles.
  • Apply acquired knowledge and skills to real-world problems through a capstone project, preparing for internships and job opportunities in the AI industry.

 

Course Modules

This course is divided into the following six modules to address the concept of AI better.

1) The Pre-Requisites Session 

2) Artificial Intelligence 

3) Machine Learning 

4) Natural Language Processing (NLP) 

5) Computer Vision 

6) Capstone Project 

 

Module – 1: Prerequisites Session 

No.  Topic  Session Duration (Hour) Resource Person
1.  Basics of Probability and Statistics 
2. Basic Linear Algebra 
3.  Basic Programming Skills  4

 

Module – 2: Artificial Intelligence 

Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. It involves the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing patterns, solving complex problems, learning from experience, and making decisions. AI aims to create systems that can mimic human cognitive functions and automate tasks that would normally require human intelligence. 

AI is based on four fundamental concepts: Machine Learning, Deep Learning, Natural Language Processing (NLP), and Computer vision. Artificial Intelligence short courses should be focused on these subjects. 

No. Topic Session Duration 

(Hour) 

Resource Person 
1. Introduction of AI and background: What is AI? Related 

fields 

2
2.  Preparatory Classes on Python for AI & ML 2
3 Data Preprocessing with Python (Lab)  2
4.  Data Visualization with Python Library (Lab)

 Data Visualization with Tableau (Lab)

4

 

Module – 3: Machine Learning 

Machine learning is concerned with the question of how to make computers learn from experience. The ability to learn is not only central to most aspects of intelligent behavior, but machine learning techniques have become key components of many software systems. For example, machine learning techniques are used to create spam filters, analyze customer purchase data, or detect fraud in credit card transactions. The field of Machine Learning, which addresses the challenge of producing machines that can learn, has become an extremely active, and exciting area, with an ever-expanding inventory of practical (and profitable) results, many enabled by recent advances in the underlying theory. This course will introduce the fundamental set of techniques and algorithms that constitute machine learning.

No.  Topic  Session 

Duration 

(Hour)

Resource 

Person

1.  Introduction, Learning Paradigms  2
2.  Concept Learning
3.  Bayes Classifier  2
4.  k-Nearest Neighbor (Lab)
5.  Regression Model (Lab)  2
6.  Decision Tree (Lab)  2
7.  Support Vector Machines with kernels (Lab)  2
8.  Dimensionality Reduction (Lab)
9.  Ensemble Learning, Boosting (Lab)  3
10.  Unsupervised Learning, Clustering (Lab)  2
11.  Classifier Evaluation (Lab)
12  Neural Networks, Perceptron (Lab)  2

 

Module – 4: Natural Language Processing (NLP) 

No.  Topic  Session 

Duration 

(Hour)

Resource 

Person

1.  Fundamentals of NLP  2
2.  Tokenization and text preprocessing (Lab)
3.  Language modeling (Lab)  2
4.  Text classification and sentiment analysis (Lab)  2
5.  Named entity recognition (Lab)  2
6.  NLP applications

 

Module – 5: Computer Vision

No.  Topic Session Duration (Hour) Resource 

Person

1. Introduction to Computer Vision 2
2.  Image preprocessing and augmentation (Lab)
3. Detection and Recognition Concepts (Lab) 2
4. Image classification (Lab)
5. Convolutional neural networks (Lab) 2
6. Deep Learning Model with TensorFlow (Lab) 2

 

Module – 6: Capstone Project

No.  Topic Session Duration (Hour) Resource 

Person

1. Breast Cancer Classification 2
2.  Semantic Similarity 2
3. Object Detection and Recognition 2
4. Binary, Multi-class and Multi-label Image Classification  2

 

AI Tools and Libraries: 

  • Introduction to AI frameworks (TensorFlow, PyTorch, etc.) 
  • Using pre-trained models 
  • Hands-on programming and implementation 

 

Book Recommendation: 

1) The Hundred-Page Machine Learning Book by Andriy Burkov

 2) Hands-On Computer Vision with TensorFlow 2: Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras, by Benjamin Planche, Eliot Andres. 

 

Frequently Asked Questions (FAQ)

 

Can I register for multiple courses?

Yes, you can register for up to two courses of your choice.

 

Is there an overlap in class schedules for multiple courses?

The course schedule is published in the notice section of the website.

 

What are the available payment methods for online enrollment?

You can pay in cash or online using the “Bkash to Bank” option. 

 

Are evening batches available for job holders?

Yes, evening batches are available. Please visit the website’s notice board to see the routine. 

 

Can I switch between online and offline classes?

You cannot switch between online and offline. You have to continue in one shift at a time.

 

How will admission be confirmed?

If you receive a confirmation email, your admission is confirmed.

 

Will classes be conducted in locations other than the chosen one?

No, classes will be conducted only at the chosen location.

 

What is the profile of the trainers?

The trainers are from the chosen faculty, along with industrial experts.

 

What is the deadline for enrollment?

The enrollment process will remain open until all seats are filled. There is no specific deadline, but once the capacity is reached, enrollment will close automatically.

 

Can I enroll physically?

To enroll physically, please visit the Multipurpose Building IT Business Incubator CUET on the third floor (rooms 301 and 302).

 

Will a recording of the sessions be available?

Yes, after each class, you will receive a recording, and you will have lifetime access to it

Show More

Course Content

Online Class Link (Zoom)
Sheikh Kamal IT Business Incubator, CUET is inviting you to a scheduled BdREN Zoom meeting. Topic: AI & Machine Learning With Python Time: Apr 19, 2024 03:00 PM Astana, Dhaka Every week on Fri, Sat, until Jul 19, 2024, 27 occurrence(s) Apr 19, 2024 03:00 PM Apr 20, 2024 03:00 PM Apr 26, 2024 03:00 PM Apr 27, 2024 03:00 PM May 3, 2024 03:00 PM May 4, 2024 03:00 PM May 10, 2024 03:00 PM May 11, 2024 03:00 PM May 17, 2024 03:00 PM May 18, 2024 03:00 PM May 24, 2024 03:00 PM May 25, 2024 03:00 PM May 31, 2024 03:00 PM Jun 1, 2024 03:00 PM Jun 7, 2024 03:00 PM Jun 8, 2024 03:00 PM Jun 14, 2024 03:00 PM Jun 15, 2024 03:00 PM Jun 21, 2024 03:00 PM Jun 22, 2024 03:00 PM Jun 28, 2024 03:00 PM Jun 29, 2024 03:00 PM Jul 5, 2024 03:00 PM Jul 6, 2024 03:00 PM Jul 12, 2024 03:00 PM Jul 13, 2024 03:00 PM Jul 19, 2024 03:00 PM Please download and import the following iCalendar (.ics) files to your calendar system. Weekly: https://bdren.zoom.us/meeting/tJAudOispjIvE9Og9aeymSoK8xRxa4H-b94B/ics?icsToken=98tyKuCsrTgrHtyctRCARowIA4jCd-jxiFhYj_pym0bkBjleUQzdbvpwKrMrOJXS --> Join BdREN Zoom Meeting from Laptop or Mobile: https://bdren.zoom.us/j/94331489597?pwd=dzFIMm5XSGh2bmdGQk5aYmVKOFJYQT09 Meeting ID: 943 3148 9597 Password: 12345678 Join by SIP from Video Conferencing Device: 94331489597@zoomcrc.com Join by H.323 162.255.37.11 (US West) 162.255.36.11 (US East) 221.122.88.195 (Mainland China) 115.114.131.7 (India Mumbai) 115.114.115.7 (India Hyderabad) 213.19.144.110 (Amsterdam Netherlands) 213.244.140.110 (Germany) 103.122.166.55 (Australia Sydney) 103.122.167.55 (Australia Melbourne) 209.9.211.110 (Hong Kong SAR) 149.137.40.110 (Singapore) 69.174.57.160 (Canada Toronto) 65.39.152.160 (Canada Vancouver) 207.226.132.110 (Japan Tokyo) 149.137.24.110 (Japan Osaka) Meeting ID: 943 3148 9597 Password: 12345678 NOTE: 1. Always keep your mic mute while you are not speaking 2. Use good headphone for better audio quality 3. Please sit face up to the window or light source 4. Adjust camera angle to make sure you’re on camera Know Zoom Meeting Best Practices: https://bit.ly/2Wh5Y41 Happy Zooming with BdREN!

  • Class Link
    00:00

The Pre-Requisites Session

Artificial Intelligence

Machine Learning

Natural Language Processing (NLP)

Computer Vision

Capstone Project

Introduction to Python

Introduction to Advanced Python and Preparatory Classes on Python for AI & ML

Data Preprocessing and Data Visualization with Python

Machine Learning Introduction and Learning Paradigms

Class 11

Decision Tree and Ensemble Techniques (Theory)

Decision Tree and Ensemble Techniques (Lab)

Class-01 Fatima Jahara (Senior Assessment Devoper, Workera.ai)

Regression

UnSupervised Learning

Intro to computer vision

Intro to Neural Network and related project

Image Preprocessing

Image Classification using DNN

Detailed Deep Learning

Multiclass classification, Object detection, Attack on Deep Learning Models Lowlight image enhancement

Class 24

Class 25

Class 26

Class 27

Student Ratings & Reviews

5.0
Total 1 Rating
5
1 Rating
4
0 Rating
3
0 Rating
2
0 Rating
1
0 Rating
MA
1 month ago
It was really great program for learner
Your Cart0
There are no products in the cart!
Continue Enrollment
Scroll to Top
×